[image: image1.jpg]Institute for Small Business & Entrepreneurship

7-9 November 2007 - Glasgow, Scotland

Improving Development Processes at Intrapreneurial Software Organisations through BPM

Ulrike Janke
Operational Manager: CTexT
North-West University, Private Bag X6001

Potchefstroom 2531, South Africa
Tel: +27 18 299 4215 Email: Ulrike.Janke@nwu.ac.za
Website: www.ctext.co.za
Abstract:

The probability of success within software development projects, which is often jeopardised by process-related problems (Davis & Leffingwell, 1995; Yardley, 2002), can usually be improved through standardisation of the processes through which software development takes place. If, however, software development is conducted in an intrapreneurial organisation, standardisation is no longer a clear solution. Intrapreneurial organisations are marked by creativity and often clearly deviate from traditional corporate organisations in respect of their control systems (Hisrich & Peters, 2005; Côté, 2006).

Against this backdrop, the objective of this particular study is to investigate the potential of business process management (BPM) to standardise the software development processes within an intrapreneurial organisation. BPM systems and principles are commonly applied in process documentation, project management, operations and manufacturing, and facilitate various administrative efficiencies. However, its application in the context of an intrapreneurial software organisation has not been thoroughly investigated in the literature.

The study commences with a literature survey on the topics of software development, innovation and intrapreneurship. The limited literature on the application of BPM on software development is supplemented with interviews with representatives from software development organisations and BPM experts. This culminates in a BPM framework for standardisation of software development processes, composed of philosophy and culture definition, standardisation along the software development life cycle, protocols and tools, and deployment.

The validity of this framework is tested in a case study of an intrapreneurial software organisation. Preliminary findings report various process improvements and suggest that the framework has the potential to standardise software development processes without harm to the creativity and innovative climate. It remains to be seen whether the early wins will be followed with sustainable process improvements alongside innovation.

1.
INTRODUCTION
The success of software development projects are often jeopardised by process-related problems (Davis & Leffingwell, 1995; Yardley, 2002). Thus, standardisation of the processes through which software development takes place should contribute to improving project outputs. Brito e Abreu (1995), for instance, writes that standardisation always plays an important part in software quality. Accordingly, a wide range of international standards exists for software development, including contributions from the International Organization for Standardization and the International Electrotechnical Commission (e.g. ISO/IEC 9126 and 12207), and the Institute of Electrical and Electronics Engineers (e.g. IEEE 828-1998, 830-1998 and 730-2002).

If, however, the software development organisation is also an intrapreneurial organisation, standardisation no longer seems to be a clear solution. Intrapreneurial organisations are marked by creativity and often clearly deviate from traditional corporate organisations in respect of their control systems (Hisrich & Peters, 2005; Côté, 2006). Highet (2006) explains that standards imply consistency and compliance, and are usually based on past experience. Innovation, on the other hand, represents a new way of doing something, and can lead to the introduction of new methods, processes, technologies, etc. (Morris & Kuratko, 2002).

Against this backdrop, the objective of this particular study is to investigate the potential of business process management (BPM) to standardise the software development processes within an intrapreneurial organisation. BPM systems and principles are commonly applied in process documentation, project management, operations and manufacturing, and various administrative efficiencies (FlowCentric, 2005; MC, 2006; MI, 2007; Savvion, 2006). However, its application in the context of an intrapreneurial software organisation has not been thoroughly investigated in the literature. This study presents a theoretic BPM implementation model and tests its validity in a case study of an intrapreneurial software organisation.
The next section is based on a literature survey to provide some general background on software development processes and the intrapreneurial context. Section 3 will focus on BPM; its applicability to the software development environment, and recommendations for deployment in this context. The result is a BPM implementation framework for an intrapreneurial software organisation, which is presented in Section 4. Section 5 reports on the implementation in a case study at the Centre for Text Technology (CTexTTM), an intrapreneurial software organisation at North-West University, South Africa. The relative success of the implementation is summarised in Section 6.

2. GENERAL BACKGROUND

2.1 Software development process standardisation

2.1.1 Software development as a process

Software development takes place through a chain of activities or processes that need to be completed within certain parameters and according to certain rules to produce a working product. Booch (1996) affirms that software development methods consist in part of processes that are responsible for specifying how and when certain objects should be developed. Paulk et al. (1993) define these processes as sets of activities, methods, practices, and transformations through which software and associated products such as code, documentation and test cases are developed and maintained.

Well-known examples of software development processes include, inter alia, the systems development life cycle (SDLC) and ADDIE. The SDLC progresses through the phases of requirements capture and analysis, solution design and development, system integration and testing, implementation and customer acceptance, and support and maintenance (Conway, 2001). ADDIE is a generic and simplified instructional systems design model and the acronym stands for analysis, design, development, implementation and evaluation (Strickland, 2007).

The progression through the various phases of this development process is prescribed by software development methodologies. For example, the Rational Unified Processes (RUP)
 framework captures many modern software development best practices such as requirements management, iterative development, continuous quality verification and change control, to provide organisations with a mature, rigorous and flexible software development process (Kruchten, 2001; Yardley, 2002). Where teams require more responsiveness and faster delivery, there are a number of agile development methodologies such as Rapid Application Development (RAD) which stresses swift prototype delivery for user evaluation (Hughes & Cotterell, 2002), the Dynamic Systems Development Method (DSDM) which promotes user involvement throughout, and Extreme Programming (XP) which prioritises requirements and focuses on the 80% reach through 20% functionality principle (Yardley, 2002) to deliver prototypes.

2.1.2 Software development dilemmas

The software development domain as a whole has always been weighed down by crippling problems. A recent Standish survey report reveals that 18% of all projects fail, while 53% run late, over budget, and/or with less than the required features and functions (SGI, 2004). Issues with processes, methodologies and technology are frequently cited in the literature as causes of these failures.

Process: Process-related issues noticeably constitute a considerable part of such software development problems. More than a decade ago, Davis and Leffingwell (1995) attributed the failure of projects to deliver expected features and the tendency to overshoot their budgets and time schedules to a lack of process. They compared it to art, as being “subject to bursts of creativity and individual genius rather than teamwork and engineering discipline”.

This situation has not improved since. Yardley (2002) lists process factors such as poor technical design, requirements management, risk management and testing. He continues to explain that failure to integrate software development processes into the software development life cycle contributes to the high failure rate of projects (Yardley, 2002). Criticising the low priority given to processes within many development teams, Booch (2001) argues that the complexity of software calls for management through higher levels of abstraction in the components created, and elimination of the points of friction in the team and its processes.

Methodology: Software failure is imminent when development takes place without a design and programming methodology (Autexier et al., 1999). Yardley (2002) highlights the absence of methodologies for project, benefits and quality management, and systems development as main reasons for software project failure. The results of a study by Tiwana and Keil (2004) also point to methodology; they indicate that the use of an inappropriate methodology for a particular project is viewed as the most critical risk driver in software development. For example, where requirements are not well understood, a structured approach such as the waterfall methodology which does not support iteration as well as an agile method such as Extreme Programming, is not the best option for that particular project (Tiwana & Keil, 2004).

Technology: Modern software development is frequently supported by technology, e.g. automated testing modules, management tools, etc. However, projects occasionally fail because they are blindsided by the technology employed to develop the software (Booch, 1996). Cugola and Ghezzi (1998) note that while automation can relieve programmers of certain chores, there are a number of tasks which cannot be fully automated, such as requirements acquisition and specification, or critical design decisions. Yardley (2002) expresses concern for the importance attributed to the ability to use project management tools; while they may add control to existing good project management practice, they cannot make up for a lack of basic project management skills such as communication and leadership.

2.1.3 The case for software development process standardisation

From the above it becomes clear that software development suffers when there is a lack in discipline with regard to the processes through which development takes place. It is the proposition of this paper that standardisation could solve these process problems of software development, as it brings control to the underlying processes of development. According to Gnatz et al. (2003), a well defined, organisation-wide, standardised software development process has a profound influence on the time, cost and quality dimensions of products. Autexier et al. (1999) appeal for standardised processes to facilitate development according to particular methodologies so as to contest software development failure. Cugola and Ghezzi (1998) agree that explicit and controlled processes warrant systematic software development and quality outputs that are free of errors.

This required standardisation of processes could be achieved through the Capability Maturity Model® Integration (CMMI®)
, a process improvement maturity model for product and service delivery (SEI, 2006). When adapted to the field of software development, the model guides organisations towards improved control of their software development processes and to evolve towards a culture of software engineering and management excellence (Paulk et al., 1993). The CMMI consists of five maturity levels (see Figure 1):
[image: image3.jpg]
Figure 1: The Levels of the Capability Maturity Model for Software
 and key process areas

(Paulk et al., 1993; Yardley, 2002)
· Initial: An unstable environment with reaction-driven commitment systems. The software process is ad hoc and occasionally chaotic. Few processes are defined and success depends on individual effort. Schedule and cost targets are typically overrun, and successes are not repeatable.

· Repeatable: Processes are planned and executed in accordance with policy. Process discipline is in place to repeat earlier successes on projects with similar applications, and products conform to specified process descriptions, standards and procedures. Plans based on past performance are more realistic than in Level 1 organisations.

· Defined: Software processes for management and development are documented, standardised and integrated into a standard software process for the organisation, which is rigorously described. All projects use an approved, tailored version of this process and performance continues to improve.

· Quantitatively managed: Detailed measures of the software process and product quality are collected; they are quantitatively understood and controlled.

· Optimising: Continuous process improvement through quantitative feedback from the process and piloting innovative ideas and technologies.

Davis and Leffingwell (1995) consider requirements management the first step to mature development practices and management and ultimately improve product quality and fit with customer needs. The model does not prescribe how an organisation is to improve its processes (Paulk et al., 1993), which leaves its implementation open to interpretation. E.g. Yardley (2002) suggests that an RAD methodology, supported by appropriate CASE
 tools and a software development methodology such as RUP can introduce a level of software process discipline and progress the maturity of an organisation to CMMI Level 2 or above.
The model was originally developed for very large teams; however, simplified versions have proven successful in small organisations (Batista & De Figueiredo, 2000; Garcia et al., 2005; FAI, 2007), such as entrepreneurial organisations where innovation and fast delivery is often more important than standards management.
2.2 Innovation and intrapreneurship

Creativity and innovation are central to entrepreneurship. Creativity, the capacity to think outside the norm and develop new ideas, concepts and processes through divergent, tangential thinking (Handzic & Chaimungkalanont, 2004), is cited by Morris and Kuratko (2002) as the ‘soul’ of entrepreneurship. Innovativeness, seen as a cornerstone of entrepreneurship (Morris & Kuratko, 2002; Timmons & Spinelli, 2003) occurs when the ideas brought about by creativity are transformed into useful solutions (Handzic & Chaimungkalanont, 2004).

Intrapreneurship, otherwise known as corporate entrepreneurship or corporate venturing, relates to entrepreneurial behaviour inside established organisations (Burns, 2005; Morris & Kuratko, 2002). By creating an environment in which talented and creative individuals with a strong drive for individual expression are encouraged to actively explore their ideas, an organisation can retain top talent and capitalise on the resulting innovations (Hisrich & Peters, 1998). Apart from innovation, other significant features of intrapreneurial settings are risk-taking and proactiveness (Covin & Slevin, 1991), adaptability, flexibility, speed and aggressiveness (Morris & Kurakto, 2002). To the individuals involved it provides freedom and the opportunity for self-actualisation (Hisrich & Peters, 1998).

Intrapreneurial organisations clearly depart from bureaucratic organisations; notably in the area of control. Hisrich and Peters (2005) elaborate on the significant differences between the intrapreneurial and traditional corporate culture; the latter is guided by principles that encourage following instructions over taking initiative, and is distinguished by established procedures, reporting systems, lines of authority and responsibility, instructions and control mechanisms. This restrictive environment is, however, not conducive to intrapreneurial values such as independence, flexibility, experimentation, responsibility and ownership. Where there is an emphasis on control, formalised management and control processes can lead to uncertainty avoidance and a loss of innovation, as innovators do not wish to be monitored in real-time (Côté, 2006).
The discussion thus far should not create the impression that intrapreneurial organisations are entirely free of control. According to Morris et al. (2006), corporate control systems play an instrumental role in organisations that demonstrate high levels of entrepreneurship, but that the nature of that role remains unclear. Control systems which encourage micromanagement and focus on efficiency at the cost of effectiveness are problematic to entrepreneurship, but flexible systems with an early warning approach can serve to facilitate entrepreneurship in organisations (Morris & Kuratko, 2002). Control systems ensure discipline over innovative projects in terms of performance benchmarks, schedules, etc.; however, elaborate systems can result in slower decision making and thus harm an organisation’s ability to exploit new ideas (Morris et al., 2006). A case study by Marginson (2002) found that administrative controls could balance the tension between innovation and control, and lead to an increase in new ideas which contributed towards organisational strategy. When designed to encourage idea generation from below with direction from middle managers who championed certain organisational accountabilities, a space was created in which employees could explore ideas as long as they at least bore some relevance to the organisational strategies.
One principle which crystallises from the literature is that of an embedded collective trust in people to be able and inclined to contribute towards the greater good. Pinchot and Pinchot advocate that organisations come to recognise the intelligence of their employees; that they are themselves capable of making good decisions, rules and procedures for effective operation. In order to develop and take advantage of such intelligence, management must facilitate open and free access to information, freedom of speech, self-organising autonomous units, and choice (Pinchot and Pinchot, 2002). Jones and George (1998) state that in the presence of unconditional trust (in which shared values create a common bond), the quality of exchange relationships are changed fundamentally as groups evolve into teams who work together towards a common good. As an enabler to creativity and entrepreneurship, Collins (2001) promotes the concept of a ‘culture of discipline’, centred on the idea of freedom and responsibility in which self-disciplined people take disciplined action to pursue that which the organisation can excel at. Simons (1995) too proposes a balance of empowerment and control, and suggests that regular diagnostic control systems be supplemented with belief, boundary and interactive control systems to inspire innovation within certain organisational boundaries.
This has important implications for control systems. While standards and rules may be well-intended, they run the risk of communicating mistrust and breaking down trust relationships. If one agrees that control systems mirror both the nature of management, and its assumptions regarding the nature of employees (Morris et al., 2006), then the development and implementation of a control system to an innovative organisation becomes much more complicated than merely prescribing and enforcing a set of rules. Such a control system should, for instance, evolve from within and develop into a self-regulating system from the bottom upwards.

2.3 Summary

In this section, software development was introduced as a process, the completion of which is guided by a variety of methodologies, depending on the characteristics of a particular project. It was further shown that software development is often weighed down by process-related problems and it was proposed that control of the development process could be regained through process standardisation.

Next, the very sensitive predisposition towards control of an intrapreneurial organisation, characterised by creativity and innovation, was discussed. Innovative employees do not perform well under real-time control and micromanagement, yet at the same time they need some kind of controlled environment within which they can thrive. The conclusion drawn was that a flexible early warning system, supplemented by explicit boundaries, a collective beliefs system and trust to guide action, might be an appropriate approach for bottom-up self-regulation.

In the following section, business process management will be explored as an approach towards software development process standardisation within an intrapreneurial organisation.

3. SOFTWARE DEVELOPMENT PROCESS STANDARDISATION THROUGH BPM

In Section 2.1 the necessity for process standardisation within software development was highlighted. This was then juxtaposed against the situation of an intrapreneurial organisation, which is characteristically extremely sensitive towards control systems, in that innovation deteriorates under inappropriate controlling mechanisms. Thus, a proposition to standardise software development processes within an intrapreneurial organisation requires very careful consideration to ensure both-way wins.
3.1 Business process management

The definition of BPM adopted in this article is that of a philosophical approach to organisation-wide management in which the focus is on the processes through which it operates, and in particular on the streamlining and optimising thereof, for which software solutions may be used.

BPM is applied to business areas such as operations and manufacturing, revenue cycles, process documentation, risk and project management, and various other administrative areas to improve efficiencies (FlowCentric, 2005; MC, 2006, MI, 2006; Savvion, 2006). BPM is well-suited for routine and repetitive processes; order and request processing, production-line activities and human resource management consist mostly of standard processes and draw upon information databases for certain inputs and outputs. Goldman (2006) notes that BPM works best for businesses where tasks are repeated continuously and have to conform to regulations, whereas processes that differ on a case-by-case basis may find BPM restrictive.

Literature on BPM in intrapreneurial settings is extremely scarce. BPM is seen as an innovation in itself (Smith & Fingar, 2003) and an innovative approach to driving business (Mooney, 2005; Fingar & Bellini, 2004). However, the matter of its impact on innovation and intrapreneurial activities does not seem to have enjoyed any attention yet.
3.2 BPM in software development

As is the case with the intrapreneurial situation, in the arena of software development, there is very little available information on the application of BPM. IBM is one of the exceptions, offering software development infrastructures tailored to special organisational needs (IBM, 2005). Singularity (2006) is another; it claims to help its customers leverage process-centric software engineering approaches through BPM software and methodologies.

Respondents from the industry differ in their support of BPM within software development. Swart et al. (2006) from Standard Bank Corporate and Investment Banking
 claim that they have never seen BPM succeed in this domain. They find that problems relating to software development point to ailing methodologies and disciplines in the field of software development and accordingly, methodologies should be the focus of an intervention plan.

Some of their arguments are substantiated by Metastorm
 director of product management Hudspeth (2006), who denies that this corporation utilises its BPM system to manage inhouse software development. While certain aspects such as bug fixing are managed by one of their BPM system functionalities, the management of the software development projects themselves are performed by project managers, who generally oversee these processes with MS Project.

While Prinsloo (2006), a business analyst at North-West University, is extremely process aware and manages each phase of projects as sub-processes within a larger process, she has never heard of a single BPM system that can take over this entire responsibility.

Tibco
 CEO Kristick (2006) too holds the opinion that software development is not a good fit for BPM. In his motivation, he refers to the McKinsey differentiation of work types:

· Transformational (such as the extraction of raw materials);

· Transactional (clerical); and

· Tacit (collaborative, complex problem solving activities).

(Beardsley et al., 2006).

The argument here is that whilst BPM is well suited for transactional work and automating these processes, the unstructured and collaborative nature of workers with tacit skills (such as programmers) makes software development a challenged field for BPM (Kristick, 2006).

Muller (2006), a senior programmer at North-West University, notes that some development projects are marked by such high levels of uncertainty, that planning becomes very complicated and processes close to impossible.
In contrast Sinur, Global360
 chief strategist, relates that he has seen proof of small businesses improve their performance through collaboration and incremental BPM deployment (Sinur, 2007). Dos Santos (2006), director of AppliSential
, holds the opinion that BPM systems can be imposed on software development. However, his understanding of BPM is of a holistic approach which includes much more than technology, as illustrated by his example of the Open Source community’s BPM system as a set of agreed principles, policies and procedures to ensure the quality, reliability and predictability criteria.

The conclusion drawn from discussions with these experts is that whilst BPM software systems are not recommended as solution to the software development environment, it might still hold potential as a philosophy towards improved management of software development processes. The following suggestions are made for implementation:

Holistic approach: The view on BPM should not be limited to technology; technology is simply an enabler of the BPM philosophy. When BPM is viewed as a structured approach which employs methods, policies, metrics, management practices and software tools to manage and optimise processes (Harris-Ferrante, quoted by Gambrill, 2006), the possibilities become endless, and different tools can for instance be used to apply BPM to various processes.

Silver (2006) too acknowledges that BPM is achievable without comprehensive BPM software solutions and that significant savings and process improvements are possible through cross-functional process thinking combined with business process analysis (BPA). BPA is often a starting point for BPM projects, as an essential tool to optimise business processes and realise BPM cost and time savings (Blechar & Sinure, 2006).

Business process awareness: Stoker (2006) suggests creating business process awareness, so that each individual is aware that their work impacts on the process and that they in fact have an obligation to comment on ineffective aspects and make suggestions for improvement of the overall process. This mode of thinking should improve understanding between the management and development functions, as everyone gains insight into the larger scope of things and the reasons behind the other parties’ actions.

Prinsloo (2006) also stresses the importance of becoming aware of the underlying business processes in projects, even if they are not managed through technology. She argues that it is crucial to understand these processes and adhere to them throughout development work.

Variety of tools: Dos Santos (2006) maintains that adherence to best practices that ensure quality, reliability and repeatability is crucial. This can be achieved through any range of tools, be they paper, e-mails, spreadsheets or BPM software. Swart et al. (2006) and Lyneham-Brown (2006) all agree that even the old-fashioned brown paper method (a practice to simply draw up plans and processes on a wall or board) can still be relevant and effective today amidst more fashionable technological alternatives. Only once the cost of maintaining a manual system becomes higher than the cost of an automated system, has the time come to acquire a BPM system (Dos Santos, 2006). In addition to this, Stoker (2006) points out that a range of customised Open Source management tools can be utilised to facilitate project management, software version control, etc., which will benefit BPM without the cost and implementation constraints.

Incremental deployment: BPM is not necessarily an organisation-wide, all-encompassing solution. Although this may be the ideal towards which analysts and vendors are striving, Douglass (2006) advises organisations to identify the critical organisational capabilities, determine how BPM can support them, and then establish which business processes will benefit from BPM. The implication for an intrapreneurial organisation is that it can choose to exclude certain activities from BPM, or apply BPM to as few as one process, with the possibility to expand it to other areas.

4. RECOMMENDATION: A BPM FRAMEWORK FOR STANDARDISATION OF SOFTWARE DEVELOPMENT PROCESSES

Based on the general background of software development, innovation and intrapreneurship in Section 2, and the discussion on BPM in Section 3 thus far, the following BPM framework for standardising software development in an intrapreneurial organisation emerges:

[image: image2.jpg]
Figure 2: BPM framework for standardisation of software development
Philosophy definition: The first step is adopting a holistic view of BPM and a bottom-up approach towards its implementation.

· BPM requires that an organisation define its business as a range of processes rather than business units. This outlook lets it identify and understand the causes of inefficiencies and to optimise them for more efficient work execution.

· It is imperative that management develop an appreciation for a bottom-up approach, since the success of a standardisation initiative will be dependent on employees’ involvement in the definition and execution of processes.

The adoption of these principles will equip the organisation to evolve towards a cultural climate in which standardisation can combine control with the freedom required by innovation.

Culture definition: The culture evolves from the new philosophy, and is defined by process awareness, discipline and trust.

· Creating an awareness of the processes through which development takes place will help employees to identify and improve inefficient steps for the benefit of the entire process. This holistic view of BPM will enable even the intrapreneurial organisation with limited resources to enjoy the advantages of BPM.

· Unconditional trust is essential to the success of the implementation. There is no quick formula; it evolves over time as a result of employee-driven process definition and execution, a public display of trust by management of employees’ ability to make good decisions, access to information (such as financial statements), trust in colleagues to do the right thing, and the freedom to explore with management protection against the risk of failure.

· Freedom and trust must be balanced (kept under ‘control’) with discipline, as defined by boundary systems and minimum rules, and a shared value system. An organisation must thus find its own balance between control and freedom, for standardisation and innovation to co-exist.

The newly defined culture will provide the context within which standardisation can begin.

Standardisation: The organisation selects a framework for standardisation.

· The SDLC outlines the basic steps in software development and therefore provides a useful point of reference for process standardisation. Critical analysis by development teams of this process, as well as of the various methodologies through which these processes take place, should occur to gain a thorough understanding of the purpose, strengths and weaknesses of each step, output and methodological approach.

· The CMMI provides a framework for standardising software development processes and thus it is recommended that advancing to its Level 2 will instil basic process discipline within software development.

Against the backdrop of a BPM enabling culture and a standardisation framework, planning for concrete implementation can start.

Protocols and tools: The organisation develops a toolkit for standardising processes. This can be a creative process in which employees experiment with a variety of methods and tools in the search for effective solutions they will be comfortable with.

· Based on the investigations in the preceding phase, an adaptation of the SDLC should be formulated as the default software development process. It should be described and motivated as a protocol and preferably be represented visually in some way during development projects, e.g. as a flow chart on a whiteboard.

· A set of templates must be created for all the outputs associated with the new SDLC. Since documentation is so often neglected due to its tendency to cause tedious, boring work, the focus should be on lean, effective documentation, and various formats thereof. For example, while large, complex projects will probably require extensive documentation, creative projects’ documentation should complement their nature, through lightweight, easy-to-amend documentation. Instead of traditional technical reports and minutes of meetings, organisations might look at illustrative documentation (where a flow diagram is the only documentation), wikis and digital photographs of the decisions and designs scribbled on whiteboards at meetings.

· Means for streamlined control should be devised, for instance checklists containing all the possible process phases and outputs. At the start of a project, the project team can decide on the best approach for the project and tick off those phases and outputs they intend to accomplish. These can then be further marked off as the project meets the various requirements.
· This implementation model requires close collaboration between everyone involved. Options to explore in this regard include regular meetings between team members, correspondence and socialisation.
With a basic toolkit in place, standardisation through BPM can be initiated.

Deployment: An incremental, bottom-up approach.

· Streamlining of processes should take place from the bottom upwards, by the people involved in these processes.

· An incremental approach is advised in which ineffective sub-processes are gradually identified and streamlined through reorganisation and implementation of tools, whether manual or technological. Disruption of business is hereby limited as experimentation takes place within small areas and successes can be exported to other process areas.
The validity of this model was tested at an intrapreneurial software organisation, as will be discussed in the next section.

5. CASE STUDY: CTexT
A strategy for standardising software development processes at an intrapreneurial organisation must uphold the essence of the creative climate in order to ensure continued innovation. That implies minimal control. The model presented in Section 4 proposes to do so through a flexible process that ensures proper movement through the SDLC with the required outputs along the way, the default execution of which is controlled by the project team itself. This section reports on a case study in which the validity of the model was tested.

Case studies are often used in the exploration of new ideas when there is little existing theory (McGinnis et al., 2004). The method has the advantage that it involves all relevant variables and lets researchers make observations of actual practice in the field (Rahim & Baksh, 2003). The subject chosen for this case study was the Centre for Text Technology (CTexT™), an intrapreneurial organisation within North-West University, South Africa. CTexT was selected since its development division had been experiencing quality problems and management was considering an investment in BPM software as a solution. In addition, at the time the centre was on the eve of doubling its staff numbers with a view to meet new contractual obligations for the development of software, which resulted in an increased interest in the matters of standardisation and innovation from management’s perspective.
5.1
CTexT background

CTexT began operations on 1 June 2004 as a non-profit, self-sustaining research and development centre, focusing on human language technology and computational linguistics (CTexT, 2006).
Its core business is software development, supported by innovative research and funded by non-traditional sources (CTexT, 2006). CTexT also functions as an outlet for products resulting from its research and development activities:

· It has developed spelling checkers for five South African languages and is engaged into expanding these to five other languages, and other operating systems and applications (e.g. Novell Groupwise and Adobe Indesign).

· CTexT is a vendor to Microsoft Ireland Operations Limited for the development of lexical data for languages spoken in African countries, such as Nigeria, Senegal and Rwanda.

· Recently the centre, together with another university, secured a national government tender to develop automatic translation systems for ten official South African languages. This constitutes CTexT’s first-time involvement in machine translation.

· CTexT is the developer of a range of computer-assisted language learning software packages for four languages, and has plans to expand into all the official South African languages and language learning for language-specific purposes.

In 2004 CTexT consisted of five employees and a dedicated development task of one product. By 2006 it employed seven full-time employees and a number of contractual workers, while its software product portfolio contained nine items. The new projects saw the centre increase its staff yet again to 15 in 2007 and open a satellite office at its partner university. As a result, logistics too have grown exponentially and will continue to do so over the next three years. The product portfolio will include an estimated 35 to 40 products by the end of 2009.

In 2006, it came to management’s attention that a lack of formal processes was creating problems within the software development division. Directly related to the systems development life cycle, it seemed that development often commenced without proper requirements capturing, analysis and design phases (requirements capture, requirements analysis, and solution design), which would then result in software which did not fully meet client needs. Within the development process itself, version control issues (versioning and configuration management), insufficient software evaluation processes (quality management) and flawed risk and project management hampered progress. Post-development processes saw incomplete technical communication to the customer support centre on known software issues (customer support management). The cost to CTexT was substantial, especially with regard to time spent on developing patches for software errors which should have been detected through pre-release testing. In one case, the entire stock of a product had to be withdrawn from the warehouse and new software had to be printed, with significant cost implication in the context of the relative small scale on which the centre operated at that time.

Management construed that the fault lay with inattention to its software development processes and that these processes could benefit from standardisation to reduce costs, improve quality and improve its ability to effectively manage increasingly complex projects.

Initial investigation of CTexT’s development processes and environment revealed remarkable similarities with Level 1 on the CMMI: there were few defined processes for anything, and development was by definition chaotic and often driven by repairing errors as they became known. The quality of final products could largely be attributed to the remarkable efforts of committed individuals to persevere until products produced no more errors. On the subject of methodology and the absence of various elements of the software development process, programmers asserted that they employed agile development methodologies; however, upon closer inspection it was found that they were in fact only practising iterative design and testing phases, whereas even the most agile of development methodologies consist of more, e.g. basic documentation.
The centre had a tight-knit culture with good group dynamics, but some signs of what one respondent called a ‘herd mentality’ were showing; people tended to think alike and did not like suggestions for new processes to avoid mistakes of earlier projects, two employees were generally hesitant to disagree with team members. Some were worried about the effect that adding eight new employees might have on the group energy.

5.2 Implementing the BPM framework for standardisation

The standardisation initiative, which was dubbed BPM@CTexT, was implemented at CTexT. As will be seen, the phases did not progress strictly chronologically in a finish-to-start fashion, but rather each one would evolve from the other and continue to progress as the following phase began.

Philosophy definition:

· Management, acutely aware of the dangers of its existing software development problems, understood that action was needed, and consequently bought into the idea of BPM. The existing management philosophy, which put into effect a flat organisational structure and engagement of employees in decision making, meant that no persuasion was needed to meet the bottom-up requirement.

· The first of a series of workshops dedicated to BPM@CTexT introduced the concept of business processes and defining the centre’s business activities in terms of processes.

Culture definition:

· Before the start of BPM@CTexT, management had been aware that trust between the older and newer employee groups was not optimal, and had been dealing with it on a case by case basis. Now, efforts to improve trust relationships gained new momentum and focused direction. Employees who either had known trust or relationship issues, or had not worked together before, would be jointly assigned to tasks (not necessarily related to software development) of which the outcome was highly valued by the centre.

· Management updated its constitution to renew its vision and mission, and to include a new section on positive and negative ‘commandments’. The positive commandments included statements such as ‘thou shalt voice thou opinion if thou doth not agree with something’, while negative commandments included ‘thou shalt not humiliate thou colleagues’. The new constitution was circulated for comment and further refined.

· Management also initiated quarterly financial reporting of sales figures and other significant information to employees as a gesture of trust towards them.

Standardisation:

· To this end, workshops were held for the entire staff, and colleagues from other organisations involved in software development were invited to help explore the concepts related to software development processes and methodologies. The traditional SDLC was revisited in an in-depth, critical discussion about the importance and challenges of each phase and its outputs. The different approaches towards the SDLC of a variety of software development methodologies, and their strengths and weaknesses in relation to another were discussed.

· The process areas related to attaining Level 2 of the CMMI were brought up coincidentally in the course of these discussions by the participants. They were recognised as parts of the SDLC and with that their importance was naturally established. Participants also agreed that the requirements management process area would enjoy first priority, followed by project tracking and oversight, as well as quality assurance.

· The reasoning behind gaining a thorough understanding of every component of the SDLC and alternative methodologies was to enable the staff to transform the SDLC according to CTexT’s development reality. The outcome was a new SDLC whose phases came with a list of rules and exceptions, and resulting outputs, each of them prioritised as ‘must have’, ‘should have’ or ‘nice to have’, to enable further adaptation within a project.

Protocols and tools:

· Through a collaborative effort, the customised SDLC culminated into a technical report. For the sake of continuous visual enforcement, a set of cards had been made with the steps, rules and outputs of the SDLC phases. The idea was to post them to a board or office wall to represent each step of the process at the start of a project to guide development work.

· Having grasped the importance of documentation through the SDLC workshops, the challenge facing the development teams was finding creative ways of accomplishing these tasks.

· A team of six employees, two each from development, management and support joined forces to develop the basics: a set of templates to cover all the documentation needs relating to development.

· Templates for potentially extensive documents, such as the requirements document, contained every possible heading, but were colour-coded to indicate the absolute essentials, topics relevant to specific methodologies, and ‘nice to have’ optional categories.

· One of the templates was a checklist, which listed all the other templates.

· With the template set complete, people started looking at other formats to create useful documents that would not waste time and creative energy from project teams. These included:

· An online wiki which served as an internal portal to the template set and projects. Project teams could post any material relating to a project to the wiki, e.g. requirements and specifications, minutes of meetings, issues for repair, links to documents, and ideas for further exploration. Once the wiki was operational, any project could reuse existing information on another project by simply creating a link.

· An online collaboration experiment, in which project documents were shared on an internet website.

· Visual documentation, such as digital photographs of flow diagrams or task lists on white boards, or scanned images of paper notes, ensured that important project moments and outcomes could be captured instantly, thereby ensuring agility within projects.

· Regarding communication, the centre had to address a problem with too much v. too little information. The survey had revealed that the programmers felt that they were attending too many meetings not worth their time, whereas support staff expressed a need for more information regarding the projects they were asked to support from time to time. This issue was addressed through the following initiatives:

· Weekly planning meetings (which had involved all employees) were replaced with regular meetings between project managers and support staff, to keep this group informed of current progress, and to assign tasks to employees as needed.

· A bi-monthly internal communiqué was initiated, which employees wrote themselves. Every employee submitted a contribution every second month in one of four categories:

· Project or other work related information – this gave individuals a platform on which to introduce new initiatives and promote their projects.

· An employee profile – through these inserts, employees learnt about colleagues’ backgrounds, interests and other interesting aspects which might otherwise not have emerged.

· News about colleagues – this column gave employees the opportunity to share any significant pieces of information, whether work-related or personal.

· A carte blanche back page – here people could share their personal hobbies or creative ideas.

· In order to address the project tracking and oversight and quality assurance process areas of the CMMI, an Open Source error (bug) tracking tool was deployed.

· The project managers experimented with simpler Excel spreadsheet options to project planning and tracking, as opposed to existing project management programs which were tedious (and difficult in the case of complex projects) to update regularly.

· Finally, one developer was made responsible for testing, and had to look into automating solutions to improve testing and decrease testing time.

Deployment:

A few development tasks within existing projects were identified for experimenting with agile development methodologies and programmers would be required to follow these methodologies for the duration of the development task, usually two to five days at a time. At the start of such a ‘project’, the programmers would agree upon an adaptation of the new SDLC for the particular project. Depending on the approach selected for a particular project, the corresponding SDLC step cards would be posted on the office wall. Changing the process midway through a project was as simple as reaching consensus within a team and reorganising the cards
.

With a view to progress to Level 2 of the CMMI, a small internal project which was to be done in collaboration with another department within the University, was identified as a good opportunity to investigate and apply the principles of configuration management on small scale.

6. CONCLUSION

BPM@CTexT is still in its early days, but so far preliminary results have been very encouraging. The underlying principle of process awareness has been established within software development, with ‘process’ surfacing on agendas, minutes of meetings and in procedure documents everywhere. The concept has been spreading to other areas too, such as public relations and financial management. The open invitation to improve processes has encouraged some employees to exhibit more initiative than before and they take pride in the results. Small early wins have increased confidence and thus a cycle of continuous improvement has emerged.

Trust relationships have evolved too, with the older and new groups moving closer together. Group trust was accredited with leading to early delivery of one project, and meeting exact requirements despite extremely little documentation in another. Trust relationships are still very frail and in the event that a person in some or other way does not meet expectation, e.g. delivers late or incomplete, it can result in a setback for the larger trust structure.

The internal communiqué has been an instant success. Its flexible format makes provision for both small and large contributions, and it has been evolving into an interpersonal communication medium, in which both professional and personal successes and problems are shared voluntarily.

Since management has started distributing financial information, a few of the employees who previously did not take interest in organisational matters not directly related to their development work, have shown signs of interest in activities such as securing new development contracts. It would seem that cognisance of development work as part of a process which starts with a client who provides work opportunity, is leading these employees to participate in sustaining this process.

Within the framework of the SDLC and CMMI it can be reported that most phases have already benefited at least incrementally from the standardisation initiative.

· A self-developed naming convention has improved versioning management dramatically, though it should be noted that not everyone has been able to adopt it correctly. (At the time of writing this paper, the convention was being revised.)

· Larger projects have benefited from more extensive documentation on quality and risk management. Testing procedures are updated continually and implemented by developers themselves. The bug tracking tool was implemented in a project and afterwards evaluated as making a valuable contribution towards effective handling of errors. It was thereafter adopted in a second project and its use extended beyond bug management to task scheduling.

· Closer collaboration with the contracted customer support centre has resulted in improved technical product information transfer to the support centre, which has lead to better support capabilities.

· Requirements management still offers much room for improvement, since developers remain too eager to start with the creative process of development to want to linger on requirements capture and analysis. A solution has been to proceed through this phase with Extreme Programming, so that this phase can develop creatively whilst being contained to a fixed period within the project cycle.

The plan to experiment with methodologies was initially met with considerable negativity, but it has since turned up the creative energy amongst developers, who have found it a good learning experience.

Despite various efforts, documentation is still experienced as a burden. However, since teams have come to acknowledge its importance, their efforts towards its production have been noticeable and experimentation with alternative formats continues. The wiki has had moderate success and an application has been made to move it to a public domain, to facilitate off-campus access.

In summary, feedback from employees confirms that software development work at CTexT has benefited from this initiative, and that they will continue to practice BPM as a standardisation mechanism. Admittedly, the new initiative is still very young and it remains to be seen whether the early wins will be followed with sustainable process improvements alongside innovation. Future work should involve expanding and refining this BPM framework for standardisation, and possibly to gather more empirical data to support its validity, although this could prove challenging in situations where projects differ and are therefore difficult to compared, as is the case with CTexT. Finally, based on the experience with documentation in the case study, I believe that the software development industry and intrapreneurial organisations can benefit in particular from further research on documentation as an essential element and process of standardisation, and in particular streamlining it within creative environments.

References:

Autexier, Hutter, Langenstein, Mantel, Rock, Schairer, Stephan, Vogt & Wolpers, 1999; VSE: Formal methods meet industrial needs. International Journal on Software Tools for Technology Transfer. http://www.dfki.de/vse/papers/ahlm98.ps.gz Date of access: 12 Jul. 2007.

Batista & De Figueiredo, 2000; CMM in a micro team: A case study. http://www.iscn.at/select_newspaper/assessments/iscaa.html Date of access: 13 Sep. 2006.

Beardsley, Johnson & Manyika, 2006; Competitive advantage from better interactions. The McKinsey Quarterly, 22 Sep. http://www.mckinseyquarterly.com/article_page.aspx?ar=1767&L2=18&L3=30 Date of access: 22 Sep. 2006.

Blechar & Sinure, 2006; Magic quadrant for business process analysis tools. Gartner RAS Core Research Note G00137850, 27 Feb. www.proformacorp.com/Downloads/files/proforma1713.pdf Date of access: 7 Oct. 2006.
Booch, 1996; Object solutions: managing the object-oriented project. Reading, Mass.: Addison-Wesley. 322 p.

Booch, 2001; Developing the future. Communications of the ACM, 44(3):118-121. Available: Academic Source Premier. Date of access: 18 Sep. 2006.

Brito e Abreu, 1995; A software quality topics overview. ERCIM News, 23. Oct. http://www.ercim.org/publication/Ercim_News/enw23/sq-topics.html Date of access: 19 Jun. 2007.

Burns, 2005; Corporate entrepreneurship – Building an entrepreneurial organisation. New York: Palgrave. 326 p.
Burton, 2002; Is this a Six Sigma, Lean or Kaizen project? iSixSigma, http://www.isixsigma.com/library/content/c020204a.asp Date of access: 6 Jul. 2007.

Carnegie Mellon Software Engineering Institute, 2004; What is a CASE environment? http://www.sei.cmu.edu/legacy/case/case_whatis.html Date of access: 18 Sep. 2006.
Collins, 2001; Good to great. London: Random House. 300 p.

Conway, 2001; Software project management: from concept to deployment. Scottsdale, Ariz.: Coriolis. 832 p.

Côté, 2006; A losing combination. CAMagazine, Aug. Available: Business Source Premier. Date of access: 25 Jun. 2007.

Covin & Slevin, 1991; A conceptual model of entrepreneurship as firm behavior. Entrepreneurship: Theory & Practice, 16(1):7-25. Fall. Available: Business Source Premier. Date of access: 28 Jun. 2007.

CTexT, NWU, 2006; CTexT Reglement. Potchefstroom. 14 p.

Cugola & Ghezzi, 1998; Software processes: a retrospective and a path to the future. Software Process: Improvement & Practice, 4(3), p101-123. Sep. Available: Computers & Applied Sciences Complete. Date of access: 12 Jul. 2007.
Davis & Leffingwell, 1995; Using requirements management to delivery of higher quality applications. Rational Software Corporation. http://tinf2.vub.ac.be/~dvermeir/courses/software_engineering/696wp.pdf Date of access: 13 Sep. 2006.

Dos Santos, 2006; (rvsantosmeister@gmail.com) 26 Oct. 2006. BPM in innovative organisations. E-mail to: Janke, U. (ntluj@puk.ac.za)

Douglass, 2006; BPM: From strategy to execution. Bpm.com. Jun. 26. http://www.bpm.com/FeaturePrint.asp?FeatureID=210 Date of access: 11 Aug. 2006.

FAI; see Fulton & Associates, Inc.

Fingar & Bellini, 2004; The real-time enterprise. Tampa, FL: Meghan-Kiffer. http://www.mkpress.com/rte.pdf Date of access: 24 Jan. 2006.

Flowcentric, 2005; Application brochure: Typical processes. Centurion. 2p. Date of access: 28 Nov. 2005.

Fulton & Associates, Inc. 2007; http://www.faicorp.com/about.htm About FAI. Date of access: 15 Jul. 2007.

Gambrill, 2006; The holistic art of BPM. Canadian Underwriter, Jul. http://www.canadianunderwriter.ca/issues/ISArticle.asp?story_id=160015113332&issue=07012006&PC Date of access: 25 Aug. 2006.

Garcia, Cepeda, Staley & Miluk, 2005; Lessons learned from adapting CMMI for small organizations. Paper presented at the SEPG Conference held in Seattle in March 2005. http://www.sei.cmu.edu/cmmi/presentations/sepg05.presentations/garcia-cepeda.pdf Date of access: 1 Jul. 2007.
GI see Global360 Inc.
Global360 Inc., 2007; Company overview. http://www.global360.com/company/ Date of access: 29 Jun. 2007.

Gnatz, Marschall, Popp, Rausch & Schwerin, 2003; Enabling a Living Software Development Process with Process Patterns. 28 p. http://www4.informatik.tu-muenchen.de/publ/papers/TUM-I0310.pdf Date of access: 12 Jul. 2007.

Goldman, 2006; BPM for small business, Version 1.0. ISP-Planet, 15 May. http://www.isp-planet.com/equipment/2006/colosa_processmaker.html Date of access: 7 Sep. 2006.
Handzic & Chaimungkalanont, 2004; Enhancing organisational creativity through socialisation. Electronic journal of knowledge management, 6(1). www.ejkm.com/volume-2/v2i1/v2-i1-art6-handzic.pdf Date of access: 23 Jan. 2006.

Highet, 2006; Innovation and creativity versus standards - who is winning the battle in your company? Foqus, Inc. http://www.grizmo.com/management_news_200606.html Date of access: 26 Jun. 2007.
Hisrich & Peters, 2005; Entrepreneurship. 6th ed. Boston, Mass: Irwin McGraw-Hill.

Hisrich & Peters, 1998; Entrepreneurship. 4th ed. Boston, Mass: Irwin McGraw-Hill. 681 p.

Hudspeth, 2006; Verbal account to Janke U. Johannesburg.
Hughes & Cotterell, 2002; Software project management. 3rd Ed. London: McGraw-Hill. 358 p.

IBM, 2005; Software developments for the on demand enterprise buyer’s guide. 16p. http://www-306.ibm.com/software/tivoli/resource-center/overall/bg-on-demand.jsp Date of access: 9 Aug. 2006.

Jacobson, Booch & Rumbaugh, 1999; The Unified Process. IEEE software, 4(16):96-102, May/June.

Jones & George, 1998; The experience and evolution of trust: implications for cooperation and teamwork. Academy of Management Review, 23(3): 531-546. Jul. Available: Business Source Premier. Date of access: 3 Jul. 2007.

Kristick, (jkristic@tibco.com) 19 Sep. 2006; BPM and software development. E-mail to: Janke, U. (ntluj@puk.ac.za)
Kruchten, 2001; What is the Rational Unified Process? The rational edge, Jan. http://www.therationaledge.com/content/jan_01/f_rup_pk.html or http://www.-128.ibm.com/developerworks/rational/library/content/RationalEdge/archives/jan01.html Date of access: 28 Oct. 2006.

Lyneham-Brown, 2006; How to apply best practice principles of BPM in the real world. Workshop presenter: 3rd annual BPM Congress, Gallagher Estate, Jhb. http://www.bpmcongress.com / http://www.iqpc.co.za 14 Sep.
McGinnis, Pumphrey, Trimmer & Wiggins, 2004; A case study in IT innovation in a small, rural community hospital. Research In Healthcare Financial Management, 9(1): p90-19. Available: Business Source Premier. Date of access: 17 Jan. 2006.
Marginson, 2002; Management control systems and their effects on strategy formation at middle-management levels: evidence From a U.K. organization. Strategic Management Journal, 23(11):1019–1031. Nov. Available: InterScience. Date of access: 26 Jun. 2007.

MC see Microsoft Corporation
Metastorm Inc., 2007; Customer List. http://www.metastorm.com/customers/cust.asp Date of access: 23 Jun. 2007.

MI see Metastorm Inc.

Microsoft Corporation, 2006; Business process management overview. http://www.microsoft.com/biztalk/solutions/bpm/overview.mspx 12 Jul. Date of access: 2 Aug. 2006.

Mooney, 2005; How to choose the right business process management solution. Metastorm white paper. http://whitepapers.techrepublic.com.com/whitepaper.aspx?docid=140090 Date of access: 11 Jan. 2006.
Morris, Allen, Schindehutte & Avila, 2006; Balanced management control systems as a mechanism for achieving corporate entrepreneurship. Journal of managerial issues, 4(18):468-491. Winter. Available: Business Source Premier. Date of access: 22 Jun. 2007.

Morris & Kuratko, 2002; Corporate entrepreneurship. Fort Worth: Harcourt. 364 p.

Muller, (itbjcm@puk.ac.za) 22 Sep. 2006; BPM in software development. E-mail to: Janke, U. (ntluj@puk.ac.za).
Paulk, Curtis, Chrissis & Weber, 1993; SEI Technical Report. Capability Maturity Model for software, version 1.1. http://www.sei.cmu.edu/publications/documents/93.reports/93.tr.024.html Date of access: 24 Sep. 2006.

Pinchot & Pinchot, 2002; Higher intelligence. Executive intelligence, 19(4):6-7. Available: Business Source Premier. Date of access: 24 Jun. 2007.

Prinsloo, 2006; Interview. Potchefstroom. (Interview notes in possession of author.)

Rahim & Baksh, 2003; Case study method for new product development in engineer-to-order organizations. Work Study, 52(1), p25-36. Available: Emerald. Date of access: 13 Jul. 2007.
Savvion, 2006; Business process management. http://www.savvion.com/business_process_management.php Date of access: 13 Feb. 2006.
SEI See Carnegie Mellon Software Engineering Institute

Singularity, 2006; Software. http://www.singularity.co.uk/solutions-software.asp Date of access: 12 Sep. 2006.

Software Engineering Institute, 2006; CMMI for development, Version 1.2. Aug. http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf Date of access: 12 Jul. 2007.

SGI See Standish Group International
Silver, 2006; Two ways to win at process improvement. Intelligent Enterprise, Aug. 1. http://www.intelligententerprise.com/showArticle.jthml?articleID=190400346 Date of access: 5 Oct. 2006.
Simons, 1995; Control in an age of empowerment. Harvard Business Review, 73(2): 80-88. Mar/Apr. Available: Business Source Premier. Date of Access: 22 Jun. 2007.

Sinur, (Jim.Sinur@global360.com) 27 Jun. 2007; BPM for small businesses and intrapreneurs? E-mail to: Janke, U. (Ulrike.Janke@nwu.ac.za).
Smith & Fingar, 2003; Workflow is just a pi process. http://www.bpm3.com/picalculus Date of access: 31 Jan. 2006.

Standish Group International, 2004; 2004 third quarter research report. http://standishgroup.com/sample_research/index.php Date of access: 21 Sep. 2006.

Stoker, (robin@insurancegateway.co.za) 29 Sep. 2006; BPM in software development. E-mail to: Janke, U. (ntluj@puk.ac.za)

Strickland, 2007; ADDIE. http://ed.isu.edu/addie/index.html Date of access: 15 Jul. 2007.

Swart, Fowler & Alexander, 2006; Interview. Johannesburg. (Digitised version of cassette recording in possession of author.)
Tibco Software Inc., 2007; http://www.tibco.com/company/default.jsp 2007-06-23.

Timmons & Spinelli, 2003; New venture creation – entrepreneurship for the 21st century. 6th ed. Boston: McGraw-Hill. 700 p.
Tiwana & Keil, 2004; The one-minute risk assessment tool. ACM Queue, Programming Languages, 2(19). http://www.acmqueue.com/modules.php?name=Content&pa=printer_friendly&pid=239&page=1 Date of access: 21 Sep. 2006.
TSI see Tibco Software Inc.

Yardley, 2002; Successful IT project delivery: learning the lessons of project failure. London: Addison-Wesley. 346p.
� This methodology was developed by Jacobson, Booch and Rumbaugh (1999:96-97), who believed that a well-defined and well-managed process was the key discriminator between productive and unsuccessful projects. RUP was designed to guide the order of a team’s activities, direct the tasks of individual developers and the team as a whole, specify what artifacts should be developed and offer criteria for monitoring and measuring a project’s products and activities.

� Developed by the Software Engineering Institute (SEI) at Carnegie Mellon University, USA.

� The CMM-SW was an adaptation of the original CMM specifically for software development, and one of three adaptations from which the CMMI eventually evolved (SEI, 2006:6).

� Computer-Aided Software Engineering: automated tools which provide support for software development activities (SEI, 2004).

� A division of the Standard Bank of South Africa

� Vendor for BPM solutions to 1300 global customers (MI, 2007)

� Vendor for BPM solutions to 3000 global customers (TSI, 2007)

� Vendor for BPM solutions to 2000 global customers (GI, 2007)

� Professional organisation offering South Africa’s first Web Facilitated ‘Certified Production and Inventory Management’ and ‘Supply Chain Management’ education courses

� An article by Gnatz et al. (2003) on a dynamic software development process inspired this approach.

Improving Development Processes at Intrapreneurial Software Organisations through BPM
Page 2 of 18

